Decentralized sensor placement and mobile localization on an underwater sensor network with depth adjustment capabilities
نویسنده
چکیده
Over 70% of our planet is covered by water. It is widely believed that the underwater world holds ideas and resources that will fuel much of the next generation of science and business. Unfortunately, underwater operations are fraught with di culty due to the absence of an easy way to collect and monitor data. In this thesis we propose a novel underwater sensor network designed to mitigate the problems of underwater sensing and communication. A key feature of this system is the ability of individual nodes to control their depth in water. This single degree of freedom allows the network to cooperatively optimize placement for communication and data collection while minimizing time and energy use. The sensor network also enables a GPS-like system for localizing underwater robots to aid in data retrieval and sensing. We develop a gradient-based decentralized controller that dynamically adjusts the depth of a network of underwater sensors to optimize sensing for modeling 3D properties of the water. We prove that the controller converges to a local minimum, and implement the controller on our underwater sensor network, where each node is capable of adjusting its depth. We verify the algorithm through simulations and in-water experiments. Most applications require that we associate a location with the sensed data. We have developed an underwater mobile robot localization algorithm that allows underwater robots to act as mobile sensors in the sensor network by using ranging information. The algorithm is a minimalist, geometric-based algorithm that only relies on knowing an upper bound on the robot speed and known static node locations. We prove that the algorithm nds the optimal location of the robot and analyze the algorithm in simulation and in water with our underwater sensor network. Thesis Supervisor: Daniela Rus Title: Professor
منابع مشابه
Adaptive Decentralized Control of Mobile Underwater Sensor Networks and Robots for Modeling Underwater Phenomena
Understanding the dynamics of bodies of water and their impact on the global environment requires sensing information over the full volume of water. In this article, we develop a gradient-based decentralized controller that dynamically adjusts the depth of a network of underwater sensors to optimize sensing for computing maximally detailed volumetric models. We prove that the controller converg...
متن کاملOptimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملA multiple criteria algorithm for planning the itinerary of mobile sink in wireless sensor networks
The mobile sink can increase the efficiency of wireless sensor networks. It moves in a monitored environment and collects the network nodes information. Thus, by the sink we can balance the power consumption and increases the network lifetime. Determining path of the sink's movement is usually modeled as an optimization problem where finding optimal solutions require collecting value of all the...
متن کاملA Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملPoster Abstract: An Underwater Positioning Scheme for 3D Acoustic Sensor Networks
We transform the 3D underwater positioning problem into its 2D counterpart via a projection technique that employs depth information available to underwater sensors. After showing that a non-degenerative projection preserves network localizability, we present a purely distributed localization scheme termed USP for underwater acoustic sensor networks. In USP, reference nodes are projected to the...
متن کامل